A method for measuring coherent elastic neutrino-nucleus scattering at a far off-axis high-energy neutrino beam target

S. J. Brice,1 R. L. Cooper,2,4 F. DeJongh,1 A. Empl,3 L. M. Garrison,2 A. Hime,4 E. Hungerford,3 T. Kobilarčik,1 B. Loer,1 C. Mariani,5 M. Mocko,4 G. Muhrer,4 R. Pattie,6 Z. Pavlović,4 E. Ramberg,1 K. Scholberg,7 R. Tayloe,2 R. T. Thornton,2 J. Yoo,1 and A. Young6

1Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
2Indiana University, Bloomington, Indiana 47405, USA
3University of Houston, Houston, Texas 77204, USA
4Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
5Virginia Tech, Blacksburg, Virginia 24061, USA
6North Carolina State University, North Carolina 27695, USA
7Duke University, Durham, North Carolina 27708, USA

(Received 25 November 2013; published 3 April 2014)
SciBath Detector

- 80 L open volume of mineral oil based liquid scintillator
- Neutrons recoil off protons, create scintillation
- 768 wavelength shifting fibers readout
- IU built custom digitizer: 12 bit, 20 MS / s
SciBath Detector

- 80 L open volume of mineral oil based liquid scintillator
- Neutrons recoil off protons, create scintillation
- 768 wavelength shifting fibers readout
- IU built custom digitizer: 12 bit, 20 MS / s
Sample Neutron Candidate Event

SciBath Detector for ANNIE -- R.L. Cooper
Sample Muon Candidate Event

Event Num: 109 (1206)
Multiplicity: 204
Total PEs: 412.6
PEs ← X: 126.0 Y: 158.1 Z: 128.5
PEs^2 ← X: 337.9 Y: 668.8 Z: 360.9
T0: 3.27227153 s
Time to last BIB: 0.0009486 s

X = 9.7 ± 5.4 cm -- skew = -1.64 -- kurt = 6.62
Y = -4.0 ± 11.6 cm -- skew = 0.47 -- kurt = 2.14
Z = -6.1 ± 6.1 cm -- skew = 0.90 -- kurt = 4.70

T = 24.7 ± 36.9 s -- skew = 6.92 -- kurt = 60.43
EigenVals: 196.01, 183.20, 34.72
EigenVct 1: 0.65X + -0.19Y + 0.74Z
EigenVct 2: -0.75X + 0.39Y + 0.59Z
EigenVct 3: 0.12X + -0.93Y + -0.34Z
Point χ^2: 1562.27 Track χ^2: 1496.78

μ = 6.9 ± 12.7 cm -- skew = -0.41 -- kurt = 2.00
Track length, ellipsoid: 58.69, rod: 47.70
Spherical radius: 18.57 Eigenvector length: 42.86
n / μ Particle Discrimination

![Graph showing n and μ particle discrimination](image)
Calibrating the SciBath Detector

- Low-light LED pulser ($Y \rightarrow Z$)
- Use cosmic rays with known energy deposit ($X \rightarrow Y$) requires previous calibration to count photons
- Detect 6 PEs / MeV → want to improve
Calibrating the SciBath Detector

- Low-light LED pulser \((Y \rightarrow Z)\)
- Use cosmic rays with known energy deposit \((X \rightarrow Y)\) requires previous calibration to count photons
- Detect 6 PEs / MeV \(\rightarrow\) want to improve

SciBath Detector for ANNIE -- R.L. Cooper
Calibrating the SciBath Detector

- Low-light LED pulser ($Y \rightarrow Z$)

- Use cosmic rays with known energy deposit ($X \rightarrow Y$) requires previous calibration to count photons

- Detect 6 PEs / MeV → want to improve
Fermilab Measurement Sites

MINOS Near

BNB Target

NuMI Target

2/12– 5/12

10/11 – 2/12

SciBath Detector for ANNIE -- R.L. Cooper
MI-12 Neutron Background Run

- Neutron flux ~20 m from target
- In-line behind beam target (ground)
- 29 Feb. – 23 Apr., 2012
- 4.9×10^{19} total protons on target (POT) (4.5×10^{12} per pulse)
MI-12 Neutron Background Run

- Neutron flux ~20 m from target
- In-line behind beam target (ground)
- 29 Feb. – 23 Apr., 2012
- 4.9×10^{19} total protons on target (POT) (4.5×10^{12} per pulse)

SciBath Detector for ANNIE -- R.L. Cooper
MI-12 Beam Time Per PE “Group”

- **HIGH PE** group shows beam time structure

- **MEDIUM PE** group has few-μs excess – slower neutrons arriving later

- **LOWEST PE** group has significant excess – 200 μs lifetime from \(n(p, d)\gamma \) neutron capture reaction
BNB Neutron Energy Spectrum

• E_n unfolded from PEs spectrum simulation of detector response

• 2.44 ± 0.34 pulse$^{-1}$ m$^{-2}$ ($E_n > 40$ MeV)

• Lose sensitivity > 200 MeV;

• Neutron spectrum 20 m from BNB

SciBath Detector for ANNIE -- R.L. Cooper
BNB Neutron Energy Spectrum

- E_n unfolded from PEs spectrum simulation of detector response
- $2.44 \pm 0.34 \text{ pulse}^{-1} \text{ m}^{-2}$ ($E_n > 40 \text{ MeV}$)
- Lose sensitivity $> 200 \text{ MeV}$
- Neutron spectrum 20 m from BNB

NOTE: variable PE bin width
BNB Neutron Energy Spectrum

- E_n unfolded from PEs spectrum simulation of detector response
- $2.44 \pm 0.34 \text{ pulse}^{-1} \text{ m}^{-2}$ ($E_n > 40 \text{ MeV}$)
- Lose sensitivity $> 200 \text{ MeV}$

- Neutron spectrum 20 m from Target

SciBath Detector for ANNIE -- R.L. Cooper
Direction Spectrum

- High PE protons will be track-like; can be imaged

- Principle component analysis yields eigenvector

- Back-projecting direction spectrum tends to point upstream of target ?!

- Tracking validated with cosmic rays and NuMI beam
Direction Spectrum

• High PE protons will be track-like; can be imaged

• Principle component analysis yields eigenvector

• Back-projecting direction spectrum tends to point upstream of target ?!

• Tracking validated with cosmic rays and NuMI beam
Direction Spectrum

- Sensitive to $n(p,d)\gamma$ reaction and see copious beam-correlated rate

- Accidental rates too high for capture-gating \rightarrow statistical sensitivity
Current Studies

• 2012 measurements at one position with no shielding

• We are improving SciBath, building concrete shielding

• Locate a viable location for CENNS & CAPTAIN

• Survey the area with portable detector
Current Studies

• 2012 measurements at one position with no shielding

• We are improving SciBath, building concrete shielding

• Locate a viable location for CENNS & CAPTAIN

• Survey the area with portable detector

SciBath Detector for ANNIE -- R.L. Cooper
Beam Off-Target Rates (> 0.5 MeV)

50 m Absorber
- 6 m from Fe beam stop
- 310 n / 10^{16} POT

Collimator
- 8 m from Be beam target
- 5608 n / 10^{16} POT

Stairwell
- 9 m from Be beam target
- 1384 n / 10^{16} POT

Target 90° FOX
- 20 m from Be beam target
- 390 n / 10^{16} POT

2012 SciBath Loc
- 20 m from Be beam target
- 211 n / 10^{16} POT

≈ 2.7×10^{16} / hr

Neutron spectrum unfolding underway
Summer 2015 Plans

• Plan to measure near BNB target building for CENNS, CAPTAIN, and general SBN program (May or June for 1 month)

• Measure in SciBooNE hall higher energy neutrino-induced neutrons: relevant for ANNIE, microBooNE, and SBN (May or June for 1 month)

• We want to help the neutron measurement efforts and are eager for additional support: siting, shifts, analysis, etc.