Coherent Elastic Neutrino-Nucleus Scattering (CEνNS):
(Pronounced seh-vens)

Robert Cooper

http://neutrino.indiana.edu/rlcooper
Outline

• Physics Motivation for CEνNS

• How do we measure CEνNS?
 i.) Neutrino production
 ii.) Detection
 iii.) Background suppression

• Prominent accelerator efforts
 i.) CENNS at FNAL BNB
 ii.) COHERENT at ORNL SNS
Describing the CEνNS Signal

- To probe a “large” nucleus (few × 10^{-15} m)
 \[E_\nu \lesssim \frac{hc}{R_N} \approx 50 \text{ MeV} \]
- Detector signature is the recoiling nucleus
- Recoil energy that is deposited
 \[E_r^{\text{max}} \approx \frac{2E^2_\nu}{M} \approx 50 \text{ keV} \]
- This is quite small for particle & nuclear physics → Dark Matter
Structure of the CEνNS Signal

- Predicted scattering rate

\[\frac{d\sigma}{dE} = \frac{G_F^2}{4\pi} \left[(1 - 4\sin^2\theta_W)Z - N \right]^2 M \left(1 - \frac{ME^2}{2E^2_\nu} \right) F(Q^2)^2 \]

≈ 0 → protons have little influence

- Recoil energy (M^{-1}) and rate (N^2)

\[\approx 0 \rightarrow \text{protons have little influence} \]

\[\text{square of sum} \rightarrow \text{part of coherence condition} \]

\[\text{nuclear form factor} \rightarrow \text{distribution of neutrons} \]

\[\text{Here be dragons} \]

\[\text{Coherent} \]

\[40\text{Ar} \]

\[\text{electrons} \]

\[1\text{Image from K. Scholberg} \]

5/4/15
Structure of the CEνNS Signal

- Predicted scattering rate

\[\frac{d\sigma}{dE} = \frac{G_F^2}{4\pi} \left[(1 - 4\sin^2 \theta_w)Z - N \right]^2 M \left(1 - \frac{ME^2}{2E_{\nu}^2} \right) F(Q^2) \]

\[\approx 0 \rightarrow \text{protons have little influence} \]

\[\text{square of sum} \rightarrow \text{part of coherence condition} \]

\[\text{nuclear form factor} \rightarrow \text{distribution of neutrons} \]

- Recoil energy \((M^{-1}) \) and rate \((N^2) \)

Physics Cases for CEνNS

- Never been observed!
- Oscillations (spatially)
- Form factors
- Supernova physics
- Non-standard interactions
- Irreducible dark matter background
- Low-mass dark matter searches (related)
- Neutrino-induced neutron production (related)
Physics Cases for CEνNS

- Never been observed!
- Oscillations (spatially)
- **Form factors**
- Supernova physics
- Non-standard interactions
- Irreducible dark matter background
- Low-mass dark matter searches (related)
- Neutrino-induced neutron production (related)

4th vs 2nd Form Factor Moments

\[
F(Q^2) = \frac{1}{Q_W} \left[F_n(Q^2) - (1 - 4 \sin^2 \theta_W) F_p(Q^2) \right]
\]

\[
F_n(Q^2) \approx \int \rho_n(r) \left(1 - \frac{Q^2}{3!} r^2 + \frac{Q^4}{5!} r^4 - \frac{Q^6}{7!} r^6 + \cdots \right) r^2 dr
\]

Ar-C data

3.5 ton Ar,
16 m from SNS,
1 year, \(\delta \Phi_\nu = 0 \)

Physics Cases for CEνNS

• Never been observed!
• Oscillations (spatially)
• Form factors
• **Supernova physics**
• Non-standard interactions
• Irreducible dark matter background
• Low-mass dark matter searches (related)
• Neutrino-induced neutron production (related)

Supernova neutrino energy is similar to accelerator neutrinos

Physics Cases for CEνNS

- Never been observed!
- Oscillations (spatially)
- Form factors
- Supernova physics
- Non-standard interactions
- **Irreducible dark matter background**
- Low-mass dark matter searches (related)
- Neutrino-induced neutron production (related)

WIPAC 2015 -- R.L. Cooper
Physics Cases for CEνNS

- Never been observed!
- Oscillations (spatially)
- Form factors
- Supernova physics
- Non-standard interactions
- Irreducible dark matter background
- Low-mass dark matter searches (related)
- Neutrino-induced neutron production (related)

ν-induced neutron production on Fe

COHERENT at the Spallation Neutron Source

J. Adam,1 P.S. Barbeau,1,2 P. Barton,3 A. Bozolzynya,4 B. Cabrera-Palmer,5 J.I. Collar,6 R. Cooper,3 R. Cooper,7 D. Dean,8 Y. Efremenko,4,9 S. Elliott,10 N. Fields,11 M. Foxe,12 A. Galindo-Uribarri,8,9 M. Gerling,5 M. Green,8 G. Greene,8,9 D. Hornback,8 T. Hossbach,12 E.B. Iverson,8 S. Klein,3 A. Khromov,4 A. Kumpcan,4 W. Lu,8 D. Markoff,13,2 P. Mueller,8 M. McIntyre,14 J. Newby,8 J. Orrell,12 S. Penttila,8 G. Perumpilly,6 D. Radford,8 H. Ray,14 J. Raybern,1,8 D. Reyna,5 G. Rich,2 D. Rimal,14 K. Scholberg*,1,† B. Scholz,6 S. Suchyta,15 R. Taylor,7 K. Vetter,15,3 and C.H. Yu8

1Department of Physics, Duke University, Durham, NC 27708, USA
2Triangle Universities Nuclear Laboratory, Durham, North Carolina, 27708, USA
3Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
4National Research Nuclear University MEPhI, Moscow, 115409, Russia
5Sandia National Laboratories, Livermore, CA 94550, USA
6Enrico Fermi Institute, Kavli Institute for Cosmological Physics and Department of Physics, University of Chicago, Chicago, IL 60637
7Department of Physics, Indiana University, Bloomington, IN, 47405, USA
8Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
9Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
10Los Alamos National Laboratory, Los Alamos, NM, USA, 87545, USA
11Enrico Fermi Institute, Kavli Institute for Cosmological Physics and Department of Physics, University of Chicago, Chicago, IL 60637, USA
12Pacific Northwest Laboratory, Richland, WA 99352, USA
13Physics Department, North Carolina Central University, Durham, North Carolina 27707, USA
14Department of Physics, University of Florida, Gainesville, FL 32611, USA
15Department of Nuclear Engineering, University of California, Berkeley, CA, USA

*Present address: Department of Physics, Duke University, Durham, NC 27708, USA
†Present address: Pacific Northwest Laboratory, Richland, WA 99352, USA

5/5/15 WIPAC 2015 -- R.L. Cooper
SNS Neutron / Neutrino Source

- Few GeV protons on target produces stopped π^+

$$\pi^+ \rightarrow \mu^+ + \bar{\nu}_\mu$$
$$\mu^+ \rightarrow e^+ + \bar{\nu}_\mu + \nu_e$$

- Prototypical source is Spallation Neutron Source

- SNS flux at 20 m

$$\Phi^{SNS} = 3 \times 10^7 \text{ s}^{-1} \text{ cm}^{-2}$$

- 700 ns pulses at 60 Hz

$$\rightarrow \approx 10^{-4} \text{ overall duty factor}$$

- ≈ 1 GeV protons (few kaons) on liquid Hg target

$$\rightarrow \approx 1 \text{ MW}$$
SNS Neutron / Neutrino Source

- Few GeV protons on target produces stopped π^+
 \[\pi^+ \rightarrow \mu^+ + \nu_\mu \]
 \[\mu^+ \rightarrow e^+ + \bar{\nu}_\mu + \nu_e \]

- Prototypical source is Spallation Neutron Source

- SNS flux at 20 m
 \[\Phi_{\text{SNS}} = 3 \times 10^7 \text{ s}^{-1} \text{ cm}^{-2} \]

CEνNS Detectors for COHERENT

• Typically use dark matter detectors for CEνNS
 - Scalable (up to ton-scale)
 - Radiopure (duty factor helps)
 - Fast (correlate to beam pulse)
 - Low-detection threshold
 - *Nuclear- / electron-recoil ID

• Multiple targets: CsI, Ge, LXe for validation (optional: NaI and LAr)

• 14 kg, 7 keVnr threshold, at 20 m could discover CEνNS: 500 events year⁻¹

*CEνNS is typically a near threshold effect. Particle recoil ID tends to be difficult.

CEνNS Detectors for COHERENT

- Typically use dark matter detectors for CEνNS
 - Scalable (up to ton-scale)
 - Radiopure (duty factor helps)
 - Fast (correlate to beam pulse)
 - Low-detection threshold
 - *Nuclear- / electron-recoil ID

- Multiple targets: CsI, Ge, LXe for validation (optional: NaI and LAr)

*CEνNS is typically a near threshold effect. Particle recoil ID tends to be difficult.

CEνNS Detectors for COHERENT

• Typically use dark matter detectors for CEνNS
 - Scalable (up to ton-scale)
 - Radiopure (duty factor helps)
 - Fast (correlate to beam pulse)
 - Low-detection threshold
 - *Nuclear- / electron-recoil ID

• Multiple targets:
 CsI, Ge, LXe for validation
 (optional: NaI and LAr)

*CEνNS is typically a near threshold effect. Particle recoil ID tends to be difficult.
Siting and Backgrounds at SNS

- Basement has significant overburden
- Measured neutron rates are very low!
CENNS at Fermilab BNB

A method for measuring coherent elastic neutrino-nucleus scattering at a far off-axis high-energy neutrino beam target

S. J. Brice,1 R. L. Cooper,2,3 F. DeJongh,1 A. Empl,1 L. M. Garrison,2 A. Hime,4 E. Hungerford,3 T. Kobilarcik,1 B. Loer,1 C. Mariani,3 M. Mocko,2 G. Muhrer,3 R. Pattie,6 Z. Pavlovic,2 E. Ramberg,1 K. Scholberg,2 R. Taylor,5 R. T. Thornton,5 J. Yoo,1 and A. Young5

1Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
2Indiana University, Bloomington, Indiana 47405, USA
3University of Houston, Houston, Texas 77204, USA
4Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
5Virginia Tech, Blacksburg, Virginia 24061, USA
6North Carolina State University, North Carolina 27695, USA

(Received 25 November 2013; published 3 April 2014)

Far-Off-Axis Approach for CENNS

- 8 GeV protons on thick Be target, horn focused mesons
- Far-off-axis predominantly decay-at-rest pions
- Siting at BNB can potentially be very close and/or easy
- $\Phi^{\text{BNB}} = 5 \times 10^5 \text{ s}^{-1} \text{ cm}^{-2}$ (20 m, $\cos \theta < 0.5$)

Far-Off-Axis Approach for CENNS

- 8 GeV protons on thick Be target, horn focused mesons
- Far-off-axis predominantly decay-at-rest pions
- Siting at BNB can potentially be very close and/or easy
- \(\Phi_{\text{BNB}} = 5 \times 10^5 \text{ s}^{-1} \text{ cm}^{-2} \)

 \(\Phi_{\text{BNB}} \) is given by \(20 \text{ m}, \cos \theta < 0.5 \)

MiniCLEAN: SNOLab → Fermilab

- Single-phase, LAr has copious VUV scintillation, 500 kg fiducial, radioactive purity

- ≈ 100 CENNS events / year, discovery and constrain non-standard interactions

Elastic Scattering Connection: ν, n, χ

- Many indistinguishable sources of few \times 10 keV nuclear recoils

- **Must measure neutron fluxes**

 $E_\nu \approx 50$ MeV

 $E_n \approx 1$ MeV

 $\nu_\chi \approx 10^{-3}$ c

 $E_r \approx 10$ keV
SciBath Neutron Measurements at BNB

- SciBath is 80 L liquid scintillator tracking detector (768 optical fiber)

![Graph showing neutron counts over time](image)

1. R. Cooper et al. arXiv:/1110.4432 [hep-ex]
SciBath Neutron Measurements at BNB

- SciBath is 80 L liquid scintillator tracking detector (768 optical fiber)

1. R. Cooper et al. arXiv:/1110.4432 [hep-ex]
CEνNS: A Phased Approach

<table>
<thead>
<tr>
<th>Phase</th>
<th>Detector Scale</th>
<th>Physics Goals</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1</td>
<td>10-100 kg</td>
<td>First Detection</td>
<td>Precision flux not needed</td>
</tr>
<tr>
<td>Phase 2</td>
<td>100 kg – 1 ton</td>
<td>SM tests, NSI searches</td>
<td>Becoming systematically limited</td>
</tr>
<tr>
<td>Phase 3</td>
<td>1 ton – multi-ton</td>
<td>Neutron structure, neutrino magnetic moment</td>
<td>Systematics control a dominant issue; multiple targets useful</td>
</tr>
</tbody>
</table>

- Much of the detectors, technology, and infrastructure in-place or will soon exist

- First results could be very soon!

1 Table from K. Scholberg at Coherent NCvAs mini-workshop at FNAL
Status of CEνNS Efforts

COHERENT at SNS
- Some existing funding in place for current shielding and NIN tests
- Will pursue DOE funding later this summer
- Could see first light 2015-2016!

CENNS at BNB
- MiniCLEAN could be moved by 2018
- Conclusive 7σ discovery in LAr in one year of running
- Developing 10-kg LAr prototype for neutron response and rates
BACKUPS
SciBath Detector

- 80 L open volume of mineral oil based liquid scintillator
- Neutrons recoil off protons, create scintillation
- 768 wavelength shifting fibers readout
- IU built custom digitizer: 12 bit, 20 MS / s
BNB Neutron Energy Spectrum

- E_n unfolded from PEs spectrum simulation of detector response
- 2.44 ± 0.34 pulse$^{-1}$ m$^{-2}$ ($E_n > 40$ MeV)
- Lose sensitivity > 200 MeV;
- Neutron spectrum 20 m from BNB
Validation of Unfolding Techniques

- Cosmic ray neutron spectrum also unfolded

- Energy shape matches, overall scale factor needed
Beam Off-Target Rates (> 0.5 MeV)

- **50 m Absorber**
 - 6 m from Fe beam stop
 - 310 n / 10^{16} POT

- **Collimator**
 - 8 m from Be beam target
 - 5608 n / 10^{16} POT

- **Stairwell**
 - 9 m from Be beam target
 - 1384 n / 10^{16} POT

- **Target 90° FOX**
 - 20 m from Be beam target
 - 390 n / 10^{16} POT

- **2012 SciBath Loc**
 - 20 m from Be beam target
 - 211 n / 10^{16} POT

Neutron spectrum unfolding underway
MI-12 Neutron Background Run

- Neutron flux ~20 m from target
- In-line behind beam target (ground)
- 29 Feb. – 23 Apr., 2012
- 4.9×10^{19} total protons on target (POT) (4.5×10^{12} per pulse)
Utility Trailer for BNB Measurement
Summary of BNB Work for CENNS

SciBath
Fast neutron measurements (10-200 MeV)

EJ-301 Cells
Portable array (0.5-20 MeV)

MiniCLEAN
First CENNS measurement

Neutrons backgrounds

CENNS-10
10 kg LAr testing prototype

CAPTAIN
Low-E neutrino cross sections